Important Principles found in Nature

and successful ideas

Mach's Principle

 All measurable quantities are definable only in relation to other measurable quantities

Principle of Relativity

 Physical theory must be expressible in a form that is unchanged by a change in frame of reference

Causality

- Present events should be determinable by past events alone
- With relativity: Space-like separated events cannot influence each other
- With quantum theory, transition amplitudes have analyticity

Localizability

 There exist in nature non-trivial systems which can be isolated, i.e. described to some approximation without the inclusion of the dynamics of systems elsewhere.

Uniqueness of Natural Observations

 There exists a local function of the configurations of an isolatable system, such that the observed configurations are near the maximum of that function.

(The function is called the 'action'.)

Emmy Nöether's Theorem

 For every continuous symmetry of the action for a system, there will be an additively-conserved quantity with a corresponding current.

Conserved Quantities

- "External" space-time symmetries give energy-momentum conservation and angular momentum conservation
- "Internal" symmetries give electric charge, baryonic charge, leptonic charge conservation, ...
- "Continuity" of events in time follows from conservation laws

Fundamental Interactions follow a Gauge Symmetry

- Relativity and Quantum Theory mean particles and fields must carry spin 0, 1/2, 1, 3/2, etc. of Planck's constant.
- Between identical particles, spin 0 and 2 exchanged bosons cause an attractive force, while spin 1causes a repulsive force.
- Short-range interactions are carried by a 'gauge' field, i.e. a spin 1 exchanged between the interacting pair.

Half interger spin particles carry additively conserved quantities

- Electric Charge
- Baryonic Charge
- Leptonic Charge
- Strangeness
- Charm
- Topness
- Bottomness
- etc.

Observation affects what is and will be observed

- Heisenberg's Uncertainty Principle
- Observables
- Nature not 'there', but rather possibilities evolve

CPT Theorem

- Charge Conjugation
- Parity
- Time Reversal

Wolfgang Pauli

Einstein's Principle of Equivalence

 Acceleration + Special Relativity means spacetime is curved

 Inertial mass equivalent to gravitational mass suggests gravity can be generated by

acceleration

 Gravity should be relatable to space-time curvature

Disorder

- Ergotic Hypothesis
- Entropy
- Information
- Chaos
- Time's arrow

Observations impacting Cosmology

- Olbers' paradox
- Hubble's expansion
- Residual black-body radiation
- Dark matter, galaxy voids
- Evolution of galaxies and stars
- Kaon decay as T-reversal violation
- Proton decay >10³² yrs
- 6 leptons, 6 quark flavors, 3 colors of quarks
- Hulse and Taylor gravitational radiation
- Black hole behavior

Cosmology Models

- Einstein: $G + \Lambda g = \kappa T$
- Schwarzschild, Kerr solutions
- Friedmann, Robinson, Walker universe (isotropic, homogeneous)
- Hawking semi-classical quantization
- DeSitter Inflation, post acceleration